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Abstract: Thousands of students have their assignments evaluated by their teachers every day around the world while
developing their studies in any branch of science. A fair evaluation of their schoolwork is a very challenging
task. Here we present a method for validating the grades attributed by professors to students programming
exercises in an undergraduate introductory course in computer programming. We collected 938 final exam
exercises in Java Language developed during this course, evaluated by different professors, and trained a
convolutional neural network over those assignments. First, we submit their codes to a cleaning process (by
removing comments and anonymizing variables). Next, we generated an embedding representation of each
source code produced by students. Finally, this representation is taken as the input of the neural network which
classifies each label (corresponding to the possible grades A, B, C, D or F). An independent neural network
is trained with source code solutions corresponding to each assignment. We obtained an average accuracy of
74.9% in a 10−fold cross validation for each grade. We believe that this method can be used to validate the
grading process made by professors in order to detect errors that might happen during this process.

1 INTRODUCTION

Approximately 2000 freshmen students each year en-
rolls at our Federal University of ABC (UFABC) in
Brazil, in one of the following interdisciplinary Bach-
elor Degrees: Bachelor in Science and Technology
and Bachelor in Science and Humanities. Both Inter-
disciplinary Bachelor Degrees have a 3−year dura-
tion divided on three quarter periods per year (Q1, Q2
and Q3). Each student has the possibility of enrolling
in a specific major such as Mathematics and Physics
(which can be concluded with an additional one year
coursework) or Engineering (which can be concluded
with two additional years). UFABC offers more than
20 options of major programs for students to enroll af-
ter the Interdisciplinary Bachelor degree. All of these
students are required to take a ILP course, ideally at
the third quarter of their freshmen year. Considering
that the Bachelor in Science and Technology has stu-
dents with multiple academic interests, from Biology
to Computer Science, their level of interest on the ILP
course varies greatly. Because of this the ILP course
has an average failure rate of 32%, see (Zampirolli
et al., 2018).

On its blended-learning modality, the ILP Course
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accepts enrollment of about 180 students at each quar-
ter period each year. For each offering 4 to 6 profes-
sors are allocated to teach those classes, which can
vary depending on their workload and the number of
students currently enrolled on their classes. About
5 Teaching Assistants are also required to help stu-
dents on their class assignments. The evaluation of
student’s performance in class is measured associat-
ing grades: A (Outstanding), B, C, D, or F (Fail).

This course has a 12−week length, with a class
workload of 60 hours/week (for both its face–to–face
and blended–learning modalities). However, at the
blended learning modality, only four presential meet-
ings are required: an introductory class, a midterm
exam, a class project submission and a final exam.
Every exam contains 3 questions, and different pro-
fessors are required to grade the solutions provided by
their students in their respective classes. The midterm
exam is a handwritten assignment: each student is
required to manually write 3 computer coding pro-
grams. The main goal of the midterm exam is to
evaluate the student’s programming logic skills: at
this point, code syntax correctness on their answers
are not required. The student has the possibility of
write their programs using a pseudocode language for
portuguese–speaking students, called Portugol Stu-
dio (univali.br/portugolstudio). The following



assignments (class projects and final exams) are re-
quired to be in Java language (at this point, Portugol–
based submissions are accepted with a penalty of
maximum B grade).

The following concepts are covered at the ILP
course: sequential instructions, conditional state-
ments, loops, vectors, matrices, and modules. The
first three concepts are covered at the midterm exam
(at the 5th week). The class project (9th week)
and final exam (10th week) covers all class con-
cepts. The classes syllabus and materials, which are
slides, videos, multiple-choice exercises (with auto-
matic correction) and programming exercises (graded
by teaching assistants), are made available to the stu-
dents on a virtual online environment.

The main objective of this paper is to create an
automatic grading approach of programming code as-
signments, in order to assist teachers on the grading
process. This approach is different from automatic
code correction programs that yield only two results:
pass (correct code) or fail. We believe that adding
an automatic evaluation to suggest a grade for each
assignment, apart from manual correction, will help
to minimize eventual misgrading problems (such as
the impact of each personal characteristics for grad-
ing process). To achieve this objective, we will focus
on the face-to-face exams - specifically, the program-
ming code exercises at final exams.

2 RELATED WORKS

(Singh et al., 2013) proposes a method for generat-
ing automatic feedback for introductory programming
assignments. This method is based on a simple lan-
guage definition for describing different error mes-
sages, which consists of possible suggestions for cor-
recting common mistakes the students might make.

(Gulwani et al., 2014) proposes an extension for
programming languages on which professors are able
to define a algorithm to look for certain patterns which
might occur during a program development. It uses
2316 correct scripts for 3 proposed programming ex-
ercises, identifying 16 different strategies using the
proposed language.

(Bhatia and Singh, 2016) presents a method for
providing feedback on syntax programming errors on
14000 introductory program assignments submitted
by students. This approach is based on Recurrent
Neural Networks (RNNs) for modelling sequences of
syntactically corrected tokens. The authors mention
that previously proposed approaches generated Ab-
stract Syntax Trees (AST) for each program, which
is not possible for source codes containing syntactical

errors. Their approach achieved 31,69% accuracy on
detecting syntax errors for 5 different programming
assignments.

The approach proposed by (Gulwani et al., 2018)
consists on a Matching Algorithm for fixing program-
ming errors by comparing them to correct solutions
provided by students. Their article also provides a
extensive reviews of previously proposed methods on
literature for fixing programming errors.

The method we are about to present does not con-
sist on detecting syntax errors or suggesting alterna-
tives for automatic code correction - instead, we pro-
pose a method to automatically evaluate the quality
of programming assignments based on their under-
lying semantic structure, in order to help professors
on the challenging task of grading programming as-
signments provided by students. Our work is based
on the method proposed by (Kim, 2014), where a
Convolutional Neural Network (CNN) with a con-
volutional layer built on word–embedding is applied
on sentence classification tasks in natural language.
The authors proposed many variations of their ap-
proach - some of them containing previously trained
word–embedding following the method proposed by
Mikolov (Mikolov et al., 2013) over 100 billion words
of the Google News corpus, publicly available at
code.google.com/p/word2vec.

3 METHOD

Here, we present how we collected our data and im-
plemented our supervised machine learning method
to grade student’s assignments, using a dataset of ex-
ercises previously graded by different professors.

3.1 Data Collection

Our dataset consists of programming exercises pre-
sented in the final exams of the ILP courses, all of
them with the same difficulty level. Each profes-
sor corrected and graded all students submissions for
a given class and multiple classes were held at the
same time at each quarter period term. The final
exam have 3 questions with different difficulty lev-
els - easy, medium and hard, respectively. Generally
the easy-level question is a question regarding vector
structures, medium-level questions covers matrices,
and hard-level questions covers module structures. In
order to solve a question regarding modules, a stu-
dent must have been able to acquire sufficient pro-
gramming abilities and expertise to solve the easy and
medium-level questions (regarding more simple data
structures).



A total of 938 questions were collected (corre-
sponding to 2017.1, 2018.1, 2018.2 e 2018.3 quarter
period terms). Figure 1 shows the number of graded
submissions for each question (labeled as e2q1, e2q2
and e2q3, respectively) with grades consisting of A
(outstanding), B (good), C (regular), D (minimum) or
F (fail). We considered only code on Java program-
ming language.

Figure 1: Data Collection: at four academic terms (2017q1,
2018q1, 2018q2 and 2018q3), we reunited 3 questions for
each term - e2q1, e2q2 and e2q3. Every question has a
grade A, B, C, D and F (fail). A total of 938 questions were
collected.

Besides that, each question has in average 4 dif-
ferent versions with minor variations on given exer-
cises values (with no impact on the solution logic or
difficulty level). We used a web framework for gener-
ating exams called webMCTest (available at vision.
ufabc.edu.br:8000) (Zampirolli et al., 2016; Zam-
pirolli et al., 2019). This systems shuffles those possi-
ble question’s variations, and selects one instance for
each student. Considering that we have a 3−questions
exam, each one having 4 possible variations, we have
64 different versions of the same exam. Although the
webMCTest also supports automatic correction for
multiple–choice questions, at this point we consider
that written solutions allows us to detect multiple lev-
els of code correctness between a hard Pass or Fail
grading.

Every student submission is automati-
cally compiled by the system (if no com-
pilation error occurs) and renamed as
StudentName StudentLastName QuestionNumber
.java before becoming available for their professors.
Those questions are manually corrected by the
professors and after grading the student’s exams they

submit their feedback to the webMCTest system,
with automatically sends e-mails to the students re-
porting their results to respective exams. More details
regarding this process are available on (Zampirolli
et al., 2018).

Following, there is an example of a hard-level
question covering programming modules:

Consider a matrix matGRADE of 150 rows
and 4 columns, where each row represents a
student and each column represents the con-
cepts of the evaluations Exam1, Activities,
Project, and Exam2. This matrix stores in its
each element, grades A, B, C, D or F.
Create a GenerateMat function (to be avail-
able to call from the main program), which
fills the matGRADE matrix with randomly
generated grades.
For each of the following items, you must
write a function and make their respective call
in the main program.

1. Write the GenerateAverage function to fill
a vector with real numbers in which each
element of the vector will be the aver-
age points of a student calculated from the
grades in their respective row of the mat-
GRADE matrix. To calculate the average
points of each student, consider A = 4.0, B
= 3.0, C = 2.0, D = 1.0 and F = 0.0. Con-
sider also the following weights: Exam1
= 30%, Activities = 10%, Project = 15%
and Exam2 = 45%. The average points of
each student will be between 0.0 and 4.0.
Example: If a row of the Matrix has A, A,
B, D, the average points will be (4 ∗ 30)+
(4∗10)+(3∗15)+(1∗45))/100 = 2.5. In
this example, FINAL GRADE will be B, as
follows.

2. Write the FinalGrade function that should
receive as parameter the vector generated in
item (1) and print on the screen the corre-
sponding grade of each student considering
the following rules:
if VALUE < 0.8, FINAL GRADE = F,
otherwise,
if VALUE < 1.5, FINAL GRADE = D,
otherwise,
if VALUE < 2.5, FINAL GRADE = C,
otherwise,
if VALUE < 3.5, FINAL GRADE = B,
otherwise,
FINAL GRADE = A.



Finally, for evaluating a student’s submission, the
professor has access to a footnote containing obser-
vations regarding possible source of errors based on
a previous analysis of each question. This informa-
tion is made available for the students alongside the
professor’s feedback on their work on every specific
question. More information on the evaluation and
grading process can be found at (Zampirolli et al.,
2018).

Following you can find an example of those foot-
note observations:

Dear Student,
You can find on Table 1 the possible errors on
this question:

Table 1: Table describing sources of possible student’s er-
rors, and the penalties associated with each error on their
final grade. Consider grade boundaries as A = 4, B = 3, C
= 2, D = 1 and F = 0. Finally, the rightmost column shows
a more detailed description for every error.

Error Penalty Error Description
1 -1 implemented GenerateMat

method to create a matrix
2 -2 implemented GenerateAverage

method to calculate average
points

3 -1 implemented method
FinalGrade

4 -2 code does not compile
correctly

5 -1 developed on Portugol Studio
(in portuguese or pseudocode)

6 -4 incomplete or
unorganized code

As some examples, the highest grade asso-
ciated with each error present on a student’s
submission is defined below:

A – No major error found;
B – Portugol Implementation;
C – The program did not compile;
F – Incomplete Code.

3.2 Classification Approach

In order to classify the level of semantic correctness
of programming language code, we use a language-
independent approach based on Distributional Se-
mantics (Lenci, 2018), in which we represent lan-
guage semantics considering as the only information

available the latent distribution of elements in the lan-
guage. In our work, to represent elements of a pro-
gramming language, we create an vector embedding
the representation of each element of this program-
ming language based only on its vocabulary’s key-
words and their distribution over each source code.
We will use this representation as an input to a Con-
volutional Neural Network (CNN) in order to distin-
guish between different levels of skills of code struc-
ture development.

For doing this, we propose a three–step method.
First, we developed a script to read the source code
files as plain text, removing code comments and cre-
ating default names for class and variable definitions
in order to reduce vocabulary variations and keep only
the programming language keywords, variable values,
digits and symbols (such as brackets and parenthe-
ses).

In the second step, we train a Skip–Gram, as pro-
posed by Mikolov (Mikolov et al., 2013), to cre-
ate ’code–embedding’, where each keyword is repre-
sented by a vector embedding of variable size, con-
taining latent probabilities of the possible contexts in
which it appears on the source codes.

A Skip–Gram is a neural network containing only
three layers: input, output and a hidden layer. The
network input consists in a one–hot encoding vector
of V dimensions of a w word, and its output con-
sists on the prediction of C context words around it.
Here, we consider as ’words’ the keywords or ele-
ments (such as brackets or mathematical symbols) in-
side the vocabulary of the programming language.

The full input is the matrix A(V ×N), where V is
the dimension of the one–hot encoded representation
of each word and N is the reduced embedded space
of the hidden layer. The output is B(N ×V ) matrix
containing embedding representations for each word
based on the reconstructed probability.

For each w input word, we try to maximize the
occurrence of other words occurring at the same sen-
tence of w. See the Figure 2 a Skip–Gram illustration
adapted to this paper. For details on this figure, see
(Kim, 2014).

The network output consists of N−dimensional
vectors for each vocabulary word.

The third step consists of an adaptation of Kim
(Kim, 2014) approach for text classification in natural
language, (see Figure 3). This approach consists of a
CNN receiving the matrix B(N×V ), where we apply
a convolutional filter c applied for a h word–window
to produce new features. For each word x, we have
a feature map c[], followed by a max–pooling oper-
ation, as proposed by (Collobert et al., 2011), and a
dropout layer to apply constraints on the weight vec-



Figure 2: An overview of our proposed adaptation of the method by (Kim, 2014), using vector-embedding representations of
keywords in a programming language, instead of natural language vocabulary. Our output consists of a 5–dimension vector
where the probabilities for each class is disposed.

tors (Hinton et al., 2012). The output consists of a
softmax layer displaying the probability distribution
over each label - which corresponds to a grade asso-
ciated to the code, varying from A (outstanding) to F
(fail). The grade having the highest associated prob-
ability, between the 5 possible grades, is taken as the
chosen grade by the neural network for each assign-
ment.

4 RESULTS AND DISCUSSION

We performed a total of 12 different experiments
(see Table 2), each one consisting of a independent
trained model over student’s solutions to the final
exam programming questions on 4 different academic
quarter period terms.

The displayed results were achieved using the fol-
lowing model configurations: input vector embed-
dings of 50 dimensions, convolutional word windows
h = [2,3,8], dropout rate of 0.5, batch–size of 64 and
25 training epochs.

To evaluate our method, we performed a 10−fold
cross validation for each experiment. For every it-
eration of the 10−fold cross validation, we calcu-
lated our method’s accuracy by comparing the trained
model predictions for their test set data (10−fold
splits × 12 training models, in a total of 120 inde-
pendent test sets) with the test sets’ expected results
(hidden from the network model in which they were
used as test sets). For a total of 1020 test samples, we
achieved the results displayed at Table 3 and Figure 4.

Figure 3: Skip-Gram method, as proposed by (Mikolov
et al., 2013), where we take a word from a vocabulary to
maximize probability of occurring words surrounding it on
a same sentence.

A detailed information of the performance of each
corresponding grade (across every training iteration)
can be found at the Table 3.

As it can be seen at the Confusion Matrix at Figure
4, each class had a accuracy (across different trained



Figure 4: Confusion Matrix of the test sets for every training iteration of the 10-fold validation (a model for each one of the 3
exam questions, in the 4 different academic terms). The colors in black represent values close to 0%. It should be noted that
the classification with the best result was with the D grade, with 80% (closer to white color).

Table 2: Accuracy of our models for each question, evalu-
ated using a 10−fold cross validation method.

Period Question Validation Accuracy (%)
1 82.2

2017.1 2 68.3
3 64.1
1 81.1

2018.1 2 76.2
3 83.8
1 72.6

2018.2 2 73.6
3 72.5
1 69.5

2018.3 2 73.2
3 81.9

Avg. (%) 74.9

networks, each one of them independently trained for
a single question) varying from 69% (A grade) to 80%
(D grade), with the largest degree of confusion be-
ing 13% (between D and F grades), which is expected
considering the subjective nature of code correction
and also the fact that both are the lowest possible
grades. More than 10% of confusion is also found be-

tween A and B grades (11%), which is also expected
for the similar reasons (the best possible evaluations).
A unexpected confusion happened between D and B
grades (13%). Confusion between other classes did
not went higher than 10%, which can be seen as a
proof that this method can perform a good analysis of
code quality in an academic environment.

Discussions

The proposed method does not intend to replace the
evaluation process performed by the professors which
is a very important step of the teaching process. Our
method intends to mitigate possible inconsistencies
that might happen during this process, taken previ-
ously made corrections as a reference (which were
also performed by the professors).

Before making each assignment grade available
for students, this method could be used by professors
to validate each grade given, in order to find clues of
inconsistent corrections. We believe that this is a real
possibility since each question on the final exam cov-
ers one specific taught concept, and we traditionally
repeat the same topics for the questions having simi-
lar difficulty levels across different academic terms.

Considering that there are 5 possible classes (vary-



Table 3: Performance of the method.

Grade Precision Recall F1-score Support
A 0.69 0.68 0.68 182
B 0.64 0.74 0.69 170
C 0.71 0.74 0.73 204
D 0.80 0.71 0.75 273
F 0.70 0.72 0.71 191

avg / total 0.72 0.72 0.72 1020

ing between A, B, C, D, and F grades), the results pre-
sented in this paper can be considered excellent. Usu-
ally, when we, as professors, are in duty of evaluating
a student submission to a question, we tend to divide
opinions when the student’s work did not achieve po-
larized results (being perfectly correct or extremely
wrong), leading to a subjectivity in the evaluation pro-
cess. For example: while some professors consider
that they should assign a D for a poor solution argu-
ing that a minimum skill was demonstrated by the stu-
dent, other professors would consider it as a complete
failure assigning a F grade for the same proposed so-
lution. In our dataset, consisting of blended-learning
modality with unified curse and exams, this subjec-
tivity between D and F grades resulted in a variation
of 20%. In (Zampirolli et al., 2018), a variation of
up to 40% was presented in the evaluation of several
classes in the face-to-face modality when there was
no unified process. Analysing the Confusion Matrix
in Figure 4, the difference between these two grades
in our method (where the method had classified as F
but the teacher attributed the D grade) was 13% .

5 CONCLUSIONS

In this article, we present a method for helping profes-
sors evaluating student code submissions in a under-
graduate introductory programming language course
(ILP). We believe that our approach could be incor-
porated on Massive Open Online Courses (MOOCs)
since it offers a deeper evaluation of source code in-
stead of a binary pass or fail feedback as it hap-
pens on traditional online programming judges such
as URI (urionlinejudge.com.br), repl.it, VPL
(Virtual Programming Lab for Moodle - vpl.dis.
ulpgc.es), among others.

We validated our method over a corpus of 938
programming exercises developed by undergraduate
students during the final exam of a introductory level
programming course, which was held on a blended–
learning modality (combining face–to–face and on-
line classes). As explained on Section 1, those stu-

dents share different levels of interest and/or skills in
computer programming – therefore, we trained our
models over a corpus reflecting many different types
of students believing that it would reflect a real–world
scenario.

Our method consisted in cleaning the text in
source codes (removing comments and providing pat-
terns for variable names), representing those source
codes on code–embedding based on Skip–Gram
method, and training them over a Convolutional Neu-
ral Network (CNN).

We achieved an average accuracy of 74.9% for
each question (all of them representing hard–level ex-
ercises). Considering the subjectivity of the process
of attributing grades to code assignments, which is a
very challenging task by itself, those results reflects
many possibilities of using this method to help pro-
fessors on grading actual code assignments.

Future work

We will perform further experiments on other pro-
gramming languages different from Java (such as
Python, C++ and Javascript) to validate the possibility
scaling this approach for those languages.

We will also reproduce those experiments with
other model configurations, expanded and improved
datasets, different neural network architectures, such
as Recurrent Neural Networks (RNNs) and Hierarchi-
cal Attention Network (HAN), and other embedded
representations (different from Skip-Gram) to com-
pare with our current results.

In further experiments, we will also try to analyze
other levels of code quality: while in this work we
focused on code semantics, we will continue our re-
search adding more relevant information for checking
code quality, such as considering code syntax tree rep-
resentation, improving error detection and/or suggest-
ing possible corrections for wrong exercise solutions
in general.
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