
An Automatic Generator and Corrector of
Multiple Choice Tests with Random Answer Keys

Francisco de Assis Zampirolli, Valério Ramos Batista, José Artur Quilici-Gonzalez
Federal University of ABC

09210–580 St. André, Brazil
Emails: {fzampirolli, valerio.batista, jose.gonzalez}@ufabc.edu.br

Abstract—In the 21st century student-teacher communication
in high schools has been increasingly computer-mediated. This
brings a strong demand for experienced professionals worldwide,
preferably graduated in Information Technology. Until the 19th
century the opportunity to attend university courses was a
privilege of a few undergraduates, so that the student-teacher
relationship was highly personalized. In the 20th century the ac-
cess to universities increased intensively in many countries, which
is a very positive fact. However, it seriously compromised the
personal student-teacher communication. This article presents
an innovative solution to simplify generation and correction of
multiple choice questions (MCQ) in which reliance on the results
is wanted. With our program we obtain different issues of the
same test with non-coinciding answer keys. Therefore, we offer
an original, trustworthy and practical way to evaluate learning
in courses attended by a large number of students. Our program
generates a LATEX file and its compiled PDF file containing the
individual exam of each student. The exam consists of a front
page followed by a list of MCQ and optionally dissertation
questions. The front page can be used as an answer sheet of
the MCQ, and it has a layout that includes a header. One
can opt for individual exams of which the answer keys to the
MCQ is unique to each student. All these options are set in a
separate configuration file. Our program uses a folder structure
to organize classes of students in CSV files and databank of
questions in TXT files. The students have to fill out their answer
sheets of the front page, which will already contain both the
student’s name and her/his id number in case of individual
tests. After the exam the test front pages of a class can all be
scanned into a single PDF file that our software will read to
perform the automatic correction. The final scores are stored in
a file that contains each student’s ID followed by the paired
letters given.answer/answer.key of each single question. This
file is in CSV format, which is both universally readable and
writable by most spreadsheet programs. Our source codes are
written in Python programming language. Our program is freely
available on the Internet, where users can download the code in
Python together with the folder structure and sample files to
generate the exams. It has been intensively used at the Federal
University of ABC in Brazil, both in classrooms and for distance
learning courses, and also in simulations with 6772 tests with
excellent results comparable with commercial products. This
paper presents a software generator of MCQ which not only
issues different versions of the same test, but also performs a
fast correction of them all, and exports the results to a CSV
file. Thanks to the facilities offered by automatic correction of
MCQ the student-teacher communication can concentrate on the
essential demands and become feasible again.

I. INTRODUCTION

One of the most striking characteristics of human com-
munication in our 21st century is the computer-mediation.

This has already become an inseparable part of the daily
life in many branches of society. Regarding Education, in
high schools even the student-teacher communication itself
now follows the computer-mediated modality in a steadily
increasing way [1], [2], [3], [4], [5]. Until the 19th century
the opportunity to attend university courses was a privilege of
a few undergraduates, so that the student-teacher relationship
was highly personalized. In the 20th century the access to
universities increased intensively in many countries, which is
a very positive fact. However, it seriously compromised the
personal student-teacher communication.

But thanks to the automation of some time-consuming tasks,
such as correcting a myriad of tests, nowadays teachers are
able to devise multiple choice examinations with sufficiently
many questions that cover the same topic in different ways [6].
This helps detect individual difficulties. When a student sys-
tematically chooses wrong answers to some specific questions
she/he can receive additional courseware on the corresponding
topic without the teacher’s intervention. Clearing up many of
these simple doubts by courseware enables the student-teacher
communication to concentrate on the essential demands. In this
way a personalized student-teacher communication is feasible
again.

All over the world, many reputable universities have been
offering free distance learning courses. In these courses thou-
sands of students are enrolled simultaneously, including the
ones that will be living abroad. Normally all coursewares are
meticulously prepared with the assumption that the students
will be self-learning. Thanks to the facilities offered by auto-
matic correction of multiple choice tests just a few teaching
assistants are necessary to evaluate the students’ self-learning
process. These assistants will report evaluations to the teacher.
Afterwards the teacher can contact some students to help them.

Not only universities have been profiting from this new
technology. Also language schools, online learning systems,
evaluation systems of secondary schools and others are dealing
with knowledge transfer and evaluation in a new way [7].

There are several online learning systems. Here we cite
some examples: [8] presents a verification environment of quiz
authoring on the internet; [9] presents an improvement of the
iAssing test package, which is devoted to a popular learning
environment called Moodle [10]; [11] introduces TecEval, an
on-line dynamic evaluation system for engineering courses.
With this system one can produce questions of four types,



and here we highlight two of them: questions whose answer
depends on an equation, and questions whose answer is an
equation that may include dynamical variables; [12] includes
questions that contain program codes for the student to answer
what their corresponding outputs are; [13] presents a work
in progress that generates gap-fill questions. Firstly, they use
machine learning to select the sentences of the test. Secondly,
their algorithm chooses a relevant part of each sentence in
order to replace it with a gap. Finally, the correct answer is
shuffled with effective distractors to make the multiple choices.

Multiple-choice tests need special criteria to score each
question adequately. For example, two questions covering the
same topic should each count less than a unique question
covering another topic [14]. Alternatively, a wrong answer to
a question can penalize another one of the same topic [15].

However, automatic correction of test answers on paper
is still not properly broadcast. Yet one must resort to the
traditional paper tests, because for many purposes online
test answers are not reliable. For instance, many language
proficiency certifications like TOEFL, ESLAT and DELE still
rely on hardcopies to ensure their integrity. Another example
is the Brazilian unified evaluation called National High School
Exam (abbrev. ENEM in Portuguese), where many attempts
of plagiarism have already happened in past occasions.

This article presents an innovative solution to facilitate the
generation and the correction of multiple choice tests in which
reliance on the results is wanted. With our program we obtain
different issues of the same test with non-coinciding answer
keys. Therefore, we offer an original, trustworthy and practical
way to evaluate learning in courses attended by a large number
of students.

II. METHOD

Our software generates a LATEX file and its compiled PDF
file containing the individual exam of each student. The exam
consists of a front page followed by a list of multiple choice
questions (MCQ) and optionally dissertation questions. The
front page can be used as an answer sheet of the MCQ, and it
has a layout that includes a header and a footer. One can opt
for individual exams of which the answer keys to the MCQ is
unique to each student. All these options are set in a separate
configuration file. Our source codes are written in Python 2.7
programming language.

The students have to fill out their answer sheets. In the case
of individual tests the answer sheet must be part of the front
page, which contains both the student’s name and her/his id
number. After the exam the test front pages of a class can all
be scanned into a single PDF file that our software will read to
perform the automatic correction. The final scores are stored in
a file that contains each student’s identification followed by the
paired letters given.answer/answer.key of each single question.
This file is in CSV format, which is both universally readable
and writable by most spreadsheet softwares: LibreOffice Calc,
KSpread, Excel, etc. See [16] for details about the CSV format.

Our test generator is called createTexTests and its
execution is via command line at a terminal prompt. It

accesses a plain text file named config.txt, of which
the header must be changed by the user according to some
general explanations that we shall give in the sequel. Please
access http://vision.ufabc.edu.br/MCTest4 for a detailed doc-
umentation and samples, which are also compressed in the
file MCTest4-master.zip that you obtain by pressing
“Download ZIP” on the right-hand side of the webpage. By
extracting this ZIP file you get the folder MCTest4-master that
we discuss right next.

A. Databanks of Student Classes

The folder MCTest4-master contains five subfolders. One of
them is called courses and is devoted to store distinct classes of
either a same course or different ones. As a practical example,
suppose you will lecture Object Oriented Programming (OOP)
and Software Engineering (SE) in a semester of 2016. If two
distinct classes will attend OOP and another three SE then
inside courses you create two folders course1 and course2,
say OOP and SE, respectively. In the former you will have two
lists of student names with their respective ids stored in the
files 16_OOP_class1.csv and 16_OOP_class2.csv,
and in the latter it is just similar. The CSV format will be
explained later. For now we must say that generating a test
for one of these classes requires you to access line 5 of
config.txt and write OOP there.

We show these CSV examples in Figure 1, which also
summarizes our hierarchy of directories and files. Names in
blue indicate that some data will be either created or added in
future. Names in green are explained in Section IV.

MCTest4−master

courses

questions

tex

figs

course1

course2

course1

course2

test1

test2

createTexTests.py

createTexTests.pdf

config.txt

16_OOP_class1.csv

16_OOP_class2.csv

questions1.txt

questions2.txt

16_OOP_class1.pdf

16_OOP_class1.tex

test1

test2

corrections

16_OOP_class1__yourEmail@domain.com.csv

16_OOP_class1__yourEmail@domain.com.pdf

Fig. 1. Directory hierarchy with files.

For instance, when the tests are printed with a different
student’s name on each issue this means that you have a
CSV file with all the students’ ids and names. This file must
be inside the folder path MCTest4-master / courses / course,
where this latter is the namesake of course1 (or course2). Our
program createTexTests will automatically access this
CSV file to include both student’s name and id in each header.
This file must be named year_course_class.csv in
order to generate the PDF namesake.



This CSV file has as many lines as students. For
example, 12345678;Thing a Ma Bob as the first
line, 23456781;Thing a Ma Jig as the second,
34567812;What Cha Ma Call It as the third and so
on, where each number is the student’s id.

B. Databanks of Questions

Inside MCTest4-master we also have the subfolder ques-
tions for you to store different subfolders. Each of them is
designated by a testname and contains files that are databanks
of questions. Inside questions / testname you must have at
least one plain text file questionsn.txt, where n is an identifier.
Again you must access config.txt to specify testname on
its line 6. There are other options in config.txt that you
can edit. We shall explain them later, but once config.txt
has been changed accordingly the command line

ipython createTexTests.py config.txt

will create the subfolder path course / testname inside the
folder tex, which is another subfolder of MCTest4-master. In-
side testname we shall have a PDF file with all the exams to be
given to that class. This file is named after the corresponding
CSV file. In our example it will be 16_OOP_class1.pdf,
and testname will also contain both the LATEX source file
and a GAB file. The GAB is in fact a plain text file
that contains the answer keys for each student’s id. In our
example it will be 16_OOP_class1 plus the extra label
__yourEmail@domain.com_GAB that will be clarified
right next. However, in Figure 1 the GAB file is omitted
for two reasons: Firstly, it should be accessed only by the
automatic corrector, not by the user. You can read its content,
but this is unnecessary because the automatic corrector will
generate a CSV file that lists each student’s given.answer /
answer.key, as explained before. Secondly, by accessing the
GAB file the user can change it accidentally, and this will
compromise fairness when running the automatic corrector.

Figure 1 shows a PDF manual in the folder MCTest4-
master, which can also be read online at http://vision.ufabc.
edu.br/MCTest4. There the user will find instructions to install
Python and LATEX. Maybe you already have an installed
LATEX, but without special packages mentioned in Section IV.
In this case the compiler will ask for the missing ones,
which can be downloaded from the internet individually.
Although createTexTests was originally written for large
classes of the Brazilian educational system, on line 22 of
config.txt the specified language is English. Changing
it to Portuguese will make createTexTests use the LATEX
package “babel” for Portuguese to recognize typed accented
letters in that language. If you need to use a third lan-
guage please contact the authors for help. We can person-
alize your createTexTests and also specify the label
__yourEmail@domain.com_GAB to your email address.
The test corrector will then send the final results to the
specified address.

III. DETAILING

The folder MCTest4-master contains our executable, its doc-
umentation, sample files and also five subfolders. As explained
before, one of them is questions for you to store different
subfolders. Each of them is designated by the same testname
mentioned in Subsection II-A. Inside questions / testname you
must have at least one plain text file questionsn.txt, where n
identifies a databank of questions.

Our generator will use all the question files inside questions
/ testname, so that you must remove the ones that should
not be on the test. In these files each question must start
with a determiner. There are three kinds of determiner
for multiple choice questions, QE::, QM::, QH::, which
stand for the attributed levels of difficulty “easy”, “medium”
and “high”, respectively (this structure was inspired by
https://code.google.com/p/criaprova). Optionally you can add
the subject of the question and a subclass identifier, which
must be either a single letter or digit. This identifier is useful
when we do not want the test to have two or more variations
of the same question. Here we give an example:

QE::Loops::a::The JAVA command{\tt for(int
i=0;i<5;i++) i=5;} will attribute 5 to i
% <- Symbol to white comments if necessary
A: Just once
A: Five times
A: Never (the compiler does not accept it)
A: The answer depends on the JAVA version

QE::Loops::a::The JAVA command{\tt for(int
i=5;i>0;i--) i=5;} will attribute 5 to i
A: Forever (it is an infinite loop)
A: Five times
A: Never (the compiler does not accept it)
A: The answer depends on the JAVA version

In our example we give only four choices to answer each
question but this number could be five, six, etc. However, it
must be the same number for all questions in all files inside
questions / testname. If you choose to generate tests with
random answer keys, then the GAB file will always take the
first ones in questionsn.txt as correct. For instance, one of
the outputs the test generator can give for the above example is

1. The JAVA command for(int i=5; i>0; i--)
i=5; will attribute 5 to i
A. The right answer depends on the JAVA version
B. Five times
C. Forever (it is an infinite loop)
D. Never (the compiler does not accept it)

By default, on line 7 of config.txt the option for
random tests is enabled. If you do not change it, then in our
example the GAB file will take C as the correct answer, the
first alternative of the corresponding question in the database.



The list of questions is generated after the answer sheet.
Figure 2 shows an example with 27 questions and 5 choices
per question. We have three columns with 9 questions each,
where the middle one was omitted but indicated with · · ·,
whereas

... indicate the same to questions 5-9, 23-27.

· · ·
...

...

Fig. 2. Example of an answer sheet.

The student is instructed to paint one single white circle
per question but without going outside the limits of the gray
annulus. This is important because the automatic corrector
works with scanned PDF images of the filled out answer
sheets. Hence, any excess of stain outside the gray limit will
make the corrector loose track of the row of circles to that
question. For the student, the automatic corrector will then
generate a CSV score file with a false number of questions
and/or answers per question.

By editing lines 11 and 12 of config.txt one determines
the layout of the answer sheet. Figure 2 shows an example
in which we chose 9 as the maximal number of questions
per column and 4 as the maximum number of columns. But
since we had a total of 36 questions then just three columns
were printed. A fourth one would appear had we added more
questions to the test.

The answer sheet is just part of the front page, which
must also include a header. This one contains important data
like institution, date, instructions, etc. They are all editable in
config.txt, but the header also contains non-editable data.

For instance, if you want each student to have a different
issue of the test, then our program will access the CSV files
mentioned in Subsection II-A to write name and id on the
header automatically. But if you just want n different issues
for a class with m students, m >> n, then your CSV file
will only have n lines containing precisely 1;char1 then
2;char2 and so on until n;charn as the last line. The
characters chark, 1 ≤ k ≤ n, are for you to quickly identify
each issue. They can also be white spaces when n is small
enough to recognize each different issue already by the first
question.

Optionally, you can add an image to the header. Our pro-
gram will search the corresponding image file in the subfolder
figs, as depicted in Figure 1. But be sure that the image
already has an adequate dimension for the header, because in
config.txt you cannot edit its dimensions. Finally, there is
another non-editable part of the header created automatically:
the barcodes. We are going to discuss them in the next section.

IV. THE AUTOMATIC CORRECTOR

For the automated decoding of graphical encryptions, scan-
ners have been widely used in various applications such as
barcodes and qrcodes. In addition, there are many systems
based on Optical Mark Recognition (OMR) that correct mul-
tiple choice questions automatically [17], [18]. They use image
segmentation techniques that are beyond the scope of our
present paper. Therefore, we shall omit details here and leave
them to be treated in future works.

As explained in Subsection II-B, our program
createTexTests generates a GAB file with each
student’s individual answer keys if you opt for random tests.
This is enabled by default on line 7 of config.txt.

The corrector reads a PDF file with all scanned test
front pages, and then uses the GAB file to generate
the scores. The PDF file is exemplified in Figure 1 by
16_OOP_class1__yourEmail@domain.com.pdf. As
explained in Section III the corrector identifies the student’s
choice for each question by analyzing its row of circles in
order to find the marked one. Finding none or two produces
0/answer.key, 2/answer.key to that question, respectively. A
barcode reading error is indicated by ID equals zero, whereas a
marking reading error by a wrong number of questions and/or
answers per question in the scores. A typical example of this
latter happens when a circle is intensely marked outside its
limits.

But each front page also comes with a barcode in the
header that hides the following information: the student’s id
or the answer keys to that issue of the test. The corrector
deciphers the barcode and then gives the final score after
having compared each marked choice with the corresponding
answer key of the GAB file. These results are then stored
in the file of scores, which in our example of Figure 1 is
16_OOP_class1__yourEmail@domain.com.csv, as
explained in Section II.

The barcodes are generated via LATEX packages pstricks and
pst-barcode, which follow the Universal Product Code (UPC).
If the test supervision is reliable then the students will hardly
be able to decipher the barcode with forbidden devices like
smartphones. Of course, the hidden answer keys are directly
related to the thickness and to the spacing of the bars. But they
differ by pixel width, which in practice cannot be recognized
with the naked eye.

In spite of that, we can prescribe rules to decipher barcodes
differently from the UPC. In this case please contact the
authors for help.

Like createTexTests the automatic corrector MCTest
is freely available for use. However, its source code is not
open yet. In order to run it the user must send both the
GAB and the scanned PDF file to our server by File Transfer
Protocol. At the shell prompt you must type

ftp vision.ufabc.edu.br

then press the enter key, log in with “anonymous” and



void password, then change directory with cd upload,
cd MCTest4 and send your files. In our example the two
commands at the ftp-prompt are

put 16_OOP_class1__yourEmail@domain.com_GAB

put 16_OOP_class1__yourEmail@domain.com.pdf

which our program MCTest will detect and process
automatically. This program runs every minute and looks
for namesake files with extensions GAB and PDF for which
the corresponding CSV has not been created yet. There
will not be a GAB file if you have disabled the option
for random tests, in which case MCTest will run much
faster. However, in this case you must have included a test
front page with the answer keys as the first one before
scanning them all into the PDF file. This is because MCTest
will take this first page as the answer key of all others if
it does not find the GAB of the corresponding PDF file.
Finally, MCTest generates the file of scores, exemplified
by 16_OOP_class1__yourEmail@domain.com.csv in
Figure 1. This file will be sent to the specified e-mail, but
you can also download it with the following command line:

get 16_OOP_class1__yourEmail@domain.com.csv

The next section is devoted to discussing some experiments
with createTexTests and MCTest.

V. EXPERIMENTS

In this section the user will have an overview of the perfor-
mance of our softwares. Here we describe three experiments
carried out with the automatic generator and corrector of
multiple choice tests.

A. First Experiment

The first and second authors lectured the course Object
Oriented Programming in 2015. We had evening and morning
classes with 66 and 70 students, respectively. Tests were gen-
erated from the same questions databank, and both tests had
10 questions with 4 choices each, plus an eleventh dissertation
question. The front pages with barcode and answer sheet were
all scanned into two distinct PDF files, one for each class. They
were both scanned with a resolution of 150 DPI. However, the
morning class had only n = 5 different issues for m = 70,
whereas the evening class had a different issue for each student
(n = m = 66). As explained at the end of Section III, the
choice of (n,m) is left to the user.

For the morning class each issue from 1 to 5 had 14, 13, 13,
16 and 14 copies, respectively. The only failure pointed out
by our corrector is depicted in Figure 3. It shows an earlier
version with circumferences instead of the annuli depicted in
Figure 2.

As explained in Section III, any excess of stain outside the
boundary will make the corrector generate an atypical CSV
score file. In Figure 3 the answer is right but the trace that
practically joins 9A with 9B made the corrector count both

columns A and B as a single one. This happens because for
each scanned page our corrector enframes all images of the
answer sheet that appear in the same vertical. But only one
test had this problem and it was then corrected separately by
hand. Students can use graphite, or else a correction fluid to
whiten the stain, but if the circular contour is damaged the
corrector can fail again.

The reader will notice that in Figure 3 circumferences
7D and 10A are slightly stained outwards. But the corrector
tracked them even though, for it identifies the circles within
a certain tolerance. In our newest version the annuli have
reduced such failures considerably. For the evening class there
was absolutely no failure.

...

Fig. 3. Failure at filling up circumference 9A on the answer sheet.

B. Second Experiment

This one was applied to a blended learning course that at our
university we call Processing of Information. It was attended
by 130 students who had to turn up only for the written exam.
In this case n = m = 130, where each exam consisted of one
dissertation question and 12 others of multiple choice. The
corrector tracked all answers without any failure.

C. Third Experiment

In the Introduction we cited the Brazilian high school
unified evaluation ENEM. As a preparatory for this exam we
took part in a simulation with 6772 tests to be automatically
corrected. Each student sat two exams, one in Mathematics
and other in Portuguese. Since it was a simulation, and our
program’s performance was also compared with the commer-
cial software REMARK, then n = 1 and m = 6772. We
refer the reader to http://remarksoftware.com for details about
that software, which however cannot generate random answer
keys for multiple choice tests. As mentioned at the end of the
Introduction, our program is perhaps the first and still the only
one with this characteristic.

Students were either at the end of the Primary School, or
in the middle of the Secondary School. The latters had exams
with 11 questions in one column, and the formers 13 questions
in two columns: 6 on the left and 7 on the right. Figure 4 shows
a test of the Secondary School.

This exam took place in schools of 10 different cities
simultaneously. Two problems occurred in different schools,
but we could re-program our code in order to get round them.



Fig. 4. Answer sheet filled out by one of the students.

All the exams were scanned with only 75 DPI of resolution, so
that we had to change the image filters used in our program.
Moreover, some of them were printed with low toner, so that
the corrector could not read the barcodes properly. Table I
shows the output of our corrector to Figure 4.

TABLE I
OUR CORRECTOR’S OUTPUT TO FIGURE 4.

Pag ID #Answer #Question #Invalid #Final

53 1234567 4 13 0 7
1 2 3 4 5 6 7 8 9 10 11 12 13

A A/C A/C A/B C D D B B D/C D/A A D/C

Regarding the students at the end of the Primary School,
they sat an exam in which Mathematics and Portuguese
were both mixed in a total of 11 questions. A comparison
between MCTest and REMARK is shown in Table II, in which
their numbers date from March 2016 and December 2015,
respectively. Our program is under constant improvement and
we aim at the professional quality of commercial softwares.

TABLE II
COMPARISON BETWEEN PERFORMANCES OF MCTest AND REMARK.

Primary School Secondary School

Tests 3224 3548

Software MCTest REMARK MCTest REMARK

Barcode Reading Errors 39 10 63 11

Marking Reading Errors 2 21 0 0

Blank (no Marking) 36 31 17 14

Duplicate Markings 102 65 59 29

We remark that only MCTest has a 100% automatic cor-
rection process, because REMARK cannot start correcting
before you define where both barcode and answer sheet were
placed in the frontpage layout. This is identified by MCTest
without any kind of human intervention. Table II shows that
our software had many more errors at reading barcodes than
REMARK. This happens exactly to the exams printed with
low toner, a limitation that future versions will not have any
more.

VI. DISCUSSIONS

Among the experiments presented in Section V we choose
the 3rd one for a detailed discussion. As explained in Subsec-
tion V-C, if the barcode print is faint then MCTest cannot
read it properly, unless we change the programmed image
filters. However, even with a faint print MCTest reads answer
sheets correctly, as exemplified by Figure 5. It shows 3 distinct
answer sheets of the test given in the Primary School. The
software REMARK was however unable to handle them.

Fig. 5. Answer sheets treated as error by REMARK.

In Figure 5 left, notice that the student practically erased
6D with a correction fluid. This was not a problem to MCTest
because we had to re-program the DPI resolution to 75 in that
case, as explained in Subsection V-C.

Figure 6 shows an error in the answer sheet that both
MCTest and REMARK failed to read due to faint print.

Regarding the 3548 tests in the Secondary School, 67 of
them had marking failures that compromised the performance
of MCTest and/or REMARK. This number is not the sum
of the corresponding four exception cases of Table II for two
reasons. Firstly, two or more of them happened on a same
scanned front page. Secondly, MCTest and REMARK agreed
in 37 cases and disagreed in 30. Anyway, students failed to fill
out properly in only 67 / 3548 = 1.88% of the cases, which
is a very low rate.

Figure 7 summarizes the distribution of the Blank and
Duplicate cases, 6th and 7th rows of Table II.

Now observe the isolated 4 in Figure 7(b) left. In that case
MCTest considered that a total of 17 questions were marked
as Blank. Of them, 13 happened in common with REMARK.
The 4 Blank cases occurred on a single answer sheet, depicted
in Figure 8. There the faintest markings 6C, 8C, 9D and 10D
were not captured by MCTest, while REMARK found them
properly.

On the other hand, Figure 9 shows a case in which MCTest
found the lightly marked alternative 4B. But there REMARK
classified the whole row 4 as Blank, which is a curious fact.
However, the marking on 6D is so light that both MCTest
and REMARK dismissed it and captured just 6B. Again in



Fig. 6. Answer sheet with marking errors for both MCTest and REMARK.

(a)

(b)

Fig. 7. Distribution of detected Blank and Duplicate cases of (a) Primary
School and (b) Secondary School.

Fig. 8. Answer sheet with too faint markings for MCTest.

Figure 9 one sees that the student marked both 9B and 9C,
which was properly identified by MCTest as Duplicate (3rd
exception of Table II). However, REMARK simply dismissed
9C and considered only 9B.

Fig. 9. A case where MCTest captured more inconsistencies than REMARK.

By the way, circles 9B and 9C of Figure 9 show a typical
example that explains why the number of Duplicate cases
were many more for MCTest than for REMARK. Our image
filter is programmed to include circles in a row that were
marked with intensities that can differ much more than in the
case of REMARK. Personally, we (the authors) do not agree
with such procedure of REMARK, which takes for itself the
decision about which answer the student chose among two
really marked ones. Our MCTest will point out these cases in
the file of scores, so that the teachers will be able to take their
own decision about them.

VII. PERFORMANCE

For the 3rd experiment with MCTest we have used mi-
croprocessor Intel (R) Core (TM) i7, CPU X980@3.33GHz
with 12GB of RAM, operating system Linux Ubuntu 64-bits
version 15.04, and executables generated by Python 2.7.9.
As explained in Section IV, MCTest runs every minute and
looks for namesake files with extension PDF (no GAB files
in this case), for which the corresponding CSV has not been
created yet. The attributes nice -20 MCTest.py include
subfolders of / srv / ftp / upload / MCTest4 in both processes
of search and correction. We call it “performance for high
priority”, which was used in the experiment of Subsection V-C.

As explained in that subsection, the simulation took place
in schools of 10 different cities simultaneously. In average we
had 8 classes per city, whence a total of 80 PDF files, namely
one for each class. The mean number of tests per PDF file was
84.66, and they ranged from 33 to 135. In total our automatic
corrector took 102min to process the 6772 tests, thus 0.9s per
test.

We could not have access to the performance data of
REMARK, hence they are omitted here.

VIII. CONCLUSION

In this article we presented our solution to a typical problem
of our 21st century: the personal student-teacher commu-
nication is becoming computer-mediated in a too fast and



increasing way. This is corroborated by a huge demand for
new academic computer programs, teaching apps, trained IT
personnel, fast networks for distance learning courses, just
to mention a few examples. In this context a software that
generates and corrects multiple choice tests can be very useful
to teachers wishing new tools to save their time, and also for
them to help the students more quickly.

After having generated different versions of a multiple
choice test with our createTexTests, our MCTest can
correct the scanned answer sheets in a fast and confiden-
tial way. Experimental results with thousands of tests were
discussed in Sections V and VI, showing that our tool
is very robust and reliable. Both our automatic generator
createTexTests and automatic corrector MCTest have
been developed since 2013. Previous versions did not include a
test generator. They only performed an automatic correction.
These previous versions were written in the following pro-
gramming languages: 1) Matlab (correction through process-
ing pictures taken by webcam); 2) Java (for smartphones and
tablets with Android); 3) Python (using a PDF file with several
tests, similarly to the method presented herein). In all these
versions the answer sheets were tables (rectangles instead of
circles) drawn in either Microsoft Word or in OpenOffice.
Questions and answer keys were neither randomly generated
yet. Please see [19], [20], [21] for earlier versions and details.

In its present version the ideal accuracy of 100% was
not achieved only because of the problems mentioned in
Section VI and Subsection V-C: faint print, low scanning
resolution instead of the recommended 150 DPI, and the
exception errors listed in Table II. If both print and resolution
are of good quality, the institution can decide about accepting
or not the tests that contain marking errors. In the second case,
students must be warned to check if they received a front page
containing an occasional stain either on the barcode or on the
answer sheet. If so, they could either receive another one, or
clarify it to the supervisors before starting, because for several
reasons some institutions do not allow access to the corrected
exams.

Future developments include an alternative app in which
instead of returning the hardcopy to the teacher, the student
scans the answer sheet with a smartphone and sends it directly
to a server. The advantage of this alternative is that any
inconsistency or problem with the test answers would be
promptly detected by the MCTest installed on the smartphone
or tablet. The evaluation of the test could be made either by
the server or by the smartphone. Future versions of MCTest
will include the same technique of [11] to create dynamic
questions. In future works we also plan to use an eLearning
system such as Moodle. It will enable sharing Databanks of
Questions already available for online tests, so that we may
also generate and print random exams with these Databanks.

ACKNOWLEDGMENT

We thank the company Dataeduc - Tecnologia educacional
for conceding the PDF files with the students’ examinations,

and also for their corrections by REMARK, with which we
drew the comparisons presented herein.

REFERENCES

[1] R. Marı́n, P. Sanz, O. Coltell, J. Inesta, F. Barber, and D. Corella,
“Student-teacher communication directed to computer-based learning
environments,” Displays, vol. 17, no. 3, pp. 167–178, 1997.

[2] M. S. McIsaac, J. M. Blocher, V. Mahes, and C. Vrasidas, “Student
and teacher perceptions of interaction in online computer-mediated
communication,” Education Media International, vol. 36, no. 2, pp. 121–
131, 1999.

[3] K. Ash, “Teachers make the move to the virtual world,” Education
Digest, vol. 76, no. 5, pp. 32–34, 2011.

[4] R. M. McHugh, C. G. Horner, J. B. Colditz, and T. L. Wallace, “Bridges
and barriers adolescent perceptions of student–teacher relationships,”
Urban Education, vol. 48, no. 1, pp. 9–43, 2013.

[5] T. J. Kopcha and C. Alger, “Student teacher communication and perfor-
mance during a clinical experience supported by a technology-enhanced
cognitive apprenticeship,” Computers & Education, vol. 72, pp. 48–58,
2014.

[6] T. U. Muenchen, “Multiple choice examinations: How to minimize
guessing,” Retrived from given address, 24 June 2016, last access date.
[Online]. Available: https://www.lehren.tum.de/en/topics/examinations/
multiple-choice-examinations

[7] S. Bargh, “A model for the implementation of digital examinations:
New Zeland’s vision for digital assessment,” Retrived from given
address, 24 June 2016, last access date. [Online]. Available:
http://www.iaea.info/documents/paper 226dc25a15.pdf

[8] A. Gordillo, E. Barra, and J. Quemada, “Enhancing web-based learning
resources with quizzes through an authoring tool and an audience
response system,” in Frontiers in Education Conference (FIE). IEEE,
2014, pp. 1–8.

[9] J. R. A. Rodrigues, L. O. Brandao, M. Nascimento, P. Rodrigues, A. A.
Brandão, H. Giroire, and O. Auzende, “iquiz: integrated assessment envi-
ronment to improve moodle quiz,” in Frontiers in Education Conference
(FIE). IEEE, 2013, pp. 293–295.

[10] M. Dougiamas and P. Taylor, “Moodle: Using learning communities
to create an open source course management system,” 2003. [Online].
Available: http://moodle.org

[11] J. Jaquez, J. Noguez, G. Aguilar-Sánchez, L. Neri, and A. González-
Nucamendi, “TecEval: An on-line dynamic evaluation system for engi-
neering courses available for web browsers and tablets,” in Frontiers in
Education Conference (FIE). IEEE, 2015, pp. 1–8.

[12] P. Brusilovsky and S. Sosnovsky, “Engaging students to work with self-
assessment questions: A study of two approaches,” in ACM SIGCSE
Bulletin, vol. 37, no. 3. ACM, 2005, pp. 251–255.

[13] G. Kumar, R. E. Banchs, and L. F. D’Haro, “Automatic fill-the-
blank question generator for student self-assessment,” in Frontiers in
Education Conference (FIE). IEEE, 2015, pp. 1–3.

[14] J. S. Hsu, T. Leonard, and K.-W. Tsui, “Statistical inference for multiple
choice tests,” Psychometrika, vol. 56, no. 2, pp. 327–348, 1991.

[15] A. Chatterjee, “Better rank assignment in multiple-choice entrance
exams,” Current Science, vol. 105, no. 2, pp. 193–200, 2013.

[16] Y. Shafranovich, “Common format and MIME type for comma-
separated values (CSV) files,” 2005. [Online]. Available: http:
//tools.ietf.org/html/rfc4180.html

[17] J. A. Fisteus, A. Pardo, and N. F. Garcı́a, “Grading multiple choice
exams with low-cost and portable computer-vision techniques,” Journal
of Science Education and Technology, vol. 22, no. 4, pp. 560–571, 2013.

[18] T. D. Nguyen, Q. H. Manh, P. B. Minh, L. N. Thanh, and T. M.
Hoang, “Efficient and reliable camera based multiple-choice test grading
system,” in Advanced Technologies for Communications (ATC), 2011
International Conference on. IEEE, 2011, pp. 268–271.

[19] F. A. Zampirolli, J. A. Qulici-Gonzalez, and R. Neves, “Automatic
correction of multiple-choice tests using digital cameras and image
processing,” in Workshop de Visão Computacional, Rio de Janeiro, 2013.

[20] ——, “Automatic correction of multiple-choice tests on android de-
vices,” in Workshop de Visão Computacional, São Carlos, 2015, pp.
83–88.

[21] R. T. China, F. A. Zampirolli, R. Neves, and J. A. Qulici-Gonzalez,
“An application for automatic multiple-choice test grading on android,”
Revista Brasileira de Iniciação Cientı́fica, vol. 3, no. 2, pp. 4–25, 2016.


