
A Generator and Corrector of Parametric Questions
in Hard Copy

Francisco de Assis Zampirolli, Fernando Teubl, Valério Ramos Batista
Centro de Matemática, Computação e Cognição

Universidade Federal do ABC (UFABC)
9.210-580 – Santo André – SP – Brazil

{fzampirolli,fernando.teubl,valerio.batista}@ufabc.edu.br

Abstract—The demand and use of automatic test generators
for exams and competitions have both been increasing. But the
handiness offered by these generators brings a difficulty in the
process of creating databanks of questions: from a group of
questions their different versions are still made for each question
separately. Of course, this manual task turns out to be lengthy
and costly. This problem proved to be effectively solved by
generators of parametric questions. Our present work introduces
an innovative and accessible approach that consists of an open
platform to generate and correct parametric questions. To the
best of our knowledge the platform presented here is the first
one totally devoted to exams in hard copy that also includes
automatic correction. Teachers and professors of any institution
that registers in our platform can share question databanks
among them.

Index Terms—parametric questions; test generators; data-
banks of questions; GUI; Python.

I. INTRODUCTION

Test generators have been easing the arduous tasks of
elaborating and correcting numerous questions for exams
given by teachers and panels. Usually these generators make
tests automatically according to a databank of questions and
predefined criteria, so that each student sits the exam with the
same content but in a different version.

A test generator can include at least one of the following
steps: (a) performing a random choice of questions from a
databank, (b) making different versions of a question either in
its statement (parametric) or in the order of answers (multiple-
choice), (c) formatting and consolidating individual tests, and
(d) following automatic methods to correct the tests, these
either online or in hard copy.

Steps (a) and (c) are relatively simple, whereas (b) and
(d) are pretty challenging. For instance, in (b) the user is
frequently a teacher who must establish well-defined criteria
upon which the question can be changed, so that the dif-
ferent answers are achieved with the same difficulty. Such
parametrizations may require technical skills the users do not
have unless they undergo some training to elaborate questions,
mainly of the sort that fits a specific course. This is a typical
requirement that risks turning inviable the popularisation of
parametric question generators.

Regarding (d), on the one hand it is simple for tests carried
out electronically. On the other hand, for handwritten tests it
turns out to be a laborious step. The automatic corrector has to

interpret and recognize the answers through computer vision
and compare them with the answer keys. Usually each version
of the test corresponds to a different answer key.

This paper introduces one of our contributions to the
research area of Education. Herewith we present an auto-
matic generator and corrector of random tests with parametric
questions, which is devoted to exams in hard copy. Our
programs were implemented in Python, together with open-
source libraries, and they are applicable to large classes that
consist of students in hundreds. Of course, for such a class any
exam requires efficient processes of massive test generation
and correction. Our present work contributes to meet the
increasing demand for massive test generators that also ensure
the integrity of the students’ marks. There are several other
similar generators in the literature but herewith we propose
an accessible and free-of-charge program that also includes a
new method to encode parametric questions.

II. RELATED WORKS

There are several test generators in the present day. Some
of them include built-in tools for parametric questions and
automatic correction of tests. As mentioned at the Introduction
these features are already implemented in our proposal but
we not only strive for a user-friendly platform with graphical
interface: our program can be used for free and the encoding
of the answer keys is inviolable.

Now we briefly describe some of these generators.
The QuizPACK1 is a system developed in C programming

language for both production and correction of questions.
Questions must be parametrized by the teachers themselves
directly in C language. Afterwards they have to upload
their program files into the system. Parameters are identified
through a pseudo-variable Z in the code, and then steadily
replaced with random integers while generating the tests.
These integers range in an interval given by the user [1], [2].

In [3] the author describes his Matlab Implementation of
the Automatic Generator of the Parameterized Tasks. He devel-
oped a self-sufficient structuring in XML to write parametrized
questions. There one can generate questions whose answers
may be numerical, phrasal, multiple-choice or cloze. The
generating process begins with the uploading of a text whose

1Quizzes for Parameterized Assessment of C Knowledge.

parameters are marked with tags, namely <input> containing
both name and type of the variables [3]. After uploading the
questions in XML the generator will produce the tests with
their parametrized questions by attributing random values to
these variables within a certain interval. The final output is
also written in XML but can be re-formatted, for example
into Moodle XML or LATEX [3].

SmartQuestion (sQ) is a software that automatically gen-
erates questions with multiple-choice answers. It follows the
concept of “a way to store all static versions of a question in
the same parametric question”. This tool offers three tabs: sQd
(sQ design), sQp (sQ parameterize) and sQg (sQ generate) [4].
The software sQ starts with the bitmap or JPEG image of the
static question given by the users. With sQd they can define a
place for each parameter, which may be either in the statement
of the question (regular) or in the answer (for the alternatives).
With sQp the users select parameters and insert new values in
a textbox compatible with LATEX. Then sQg makes sub-images
of the changed parameters and incorporates them into the
respective places. The final result is a complete image of the
new question. With sQg one can also shuffle the alternatives
so that versions vary in both statement and order of answers
[4].

MEGUA (Mathematics Exercise Generator, Universidade
de Aveiro)2 is an open-source software that enables one to
make databanks of parametrized questions with their respec-
tive answers all in LATEX. It works with the mathematical
software SageMath, which uses Python programming language
[5]. Its question databanks are called “Books” and built through
either PDFLatex (for hard copy) or HTML and MathJAX (for
web publishing) [6]. The elaboration of a question essentially
occurs inside the Notebook of SageMathCloud, whose name
has changed to CoCalc since May 2017. This one consists of
three steps: Firstly, on a new worksheet we make a cell to
import the whole MEGUA library and open/create a databank
in which the questions will be stored. Secondly, the code of
the question is introduced into another cell that consists of a
text in LATEX and the programming in Python. The LATEX part
is divided in sections (cataloguing and description of the
exercise), “%problem” (name and statement of the question)
and “%answer” (its solution). Finally CoCalc is concluded
by the programming part, which contains two functions:
“make random” (generates random values for the statement)
and “solve” (computes the right solution and gives others
for the multiple-choice). The output of this cell execution
is two files, one in PDF and other in TEX [7]. There is
also a resource to add parametrized graphs to the exercises.
However, MEGUA is not endowed with automatic correction
of parametric questions in hard copy, a desirable feature at
evaluating hundreds of candidates.

TestMakPro3 is a commercial software that generates para-
metric questions. It was implemented in JavaScript [8] and
enables the user to elaborate the statement of a question with

2The name “MEGUA” stands for a trademark of the University of Aveiro
since 2012 [5].

at most three variables, together with their range of values.
For each variable we set its margin of error and its number of
decimals to be given in each answer.

AMC is a free software to produce and manage multiple-
choice quizzes, which also performs their automatic correc-
tion. Tests are written in LATEX but any user unfamiliar with
this document preparation system can give them written in
a special format called AMC-TXT, whose syntax is quite
simple. One of the facilities of AMC is the option to shuffle
questions so that each student’s version turns out to be unique.
Another is an automatic correction of the scanned tests that
already brings their marks [9], [10]. But AMC does not work
with parametric questions. Moreover, though AMC includes a
database of students the tests are first associated to them only
in the correction process, hence each student must fill out their
identification data. Corrections are carried out inside the very
statements of the questions, so that one has to digitize all exam
pages for the correction process.

MakeTests3 is an open-source program written in Python.
Its main purpose is to generate tests out of a totally random
choice of questions. For this purpose MakeTests enables the
user to write questions programmed in Python and to classify
them through directories. These correspond to subjects and
levels of difficulty. MakeTests writes the exam headers and
the random questions in PDF through specifications described
in a configuration JSON file. The most important feature
of MakeTests is the production of questions in a totally
independent way, since one writes each question directly in
Python (interfaced with LATEX). The user can set any type
of answers: multiple-choice, true/false, numerical, etc. The
greatest difficulty in MakeTests is that the user must have
advanced knowledge of Python to programme questions, and
this is impracticable in several areas of Education. Moreover,
MakeTests does not include automatic correction: it generates
answer keys but the correction is performed manually.

In general all approaches in the literature are somehow
efficient at tackling production and/or correction of tests.
However, their main common point is the inaccessibility either
because the users have to master programming languages
(eg. [1], [6]) and/or to pay for the software (eg. [3], [8]).
Table I summarizes this section, together with our proposal
MCTest 4, whose previous versions could only circumvent the
absence of parametric questions, as explained in Sect. III-A,
and also a mechanism for them that produces alternatives
without repetition, detailed in Sect. III-B. Our software present
day’s version is called MCTest 4.1.

III. METHODS

Our method to produce parametric questions is now pre-
sented here. Firstly we describe the MCTest platform in the
standard configuration. Afterwards we explain further imple-
mentations that now bolster the new functionalities.

3Available at https://github.com/fernandoteubl/MakeTests
4Available at https://github.com/fzampirolli/MCTest4

Q
ui

zP
ac

k

[3
]

Sm
ar

tQ
ue

st
io

n

M
E

G
U

A

Te
st

M
ak

Pr
o3

A
M

C

M
ak

eT
es

ts

M
C

Te
st

Language C Matlab Python JavaScript Perl Python Python
Commercial ×
Open-Source × × ×
Parametric Questions × × × × × ×
Automatic Correction of Hard Copies × ×
User Has to Programme × × × × †

†: Only if you make use of parametric questions.
TABLE I

COMPARISON BETWEEN TEST GENERATORS

A. MCTest

1) History: Nowadays the version 4.0 of our free software
MCTest is finally available. MCTest has started in 2010 to
automate an exam for openings in a specialization course at a
Brazilian university. More than thousand candidates enrolled
for that exam.

In the present day we apply MCTest to produce and correct
over ten thousand tests every year. Version 1 was implemented
in Matlab with automatic correction performed by snapping
the exams with a computer webcam. Until version 3 the
exams were written in traditional text editors. Version 2
was implemented in Java for Android. The 3rd version used
Python, still only for correction of tests, which were digitized
as input. Finally in the version 4.0 we added production of
tests in Python through LATEX.

In the present version multiple-choice tests are automat-
ically corrected by uploading the answer cards digitized in
PDF. This must be done via the ftp server vision.ufabc.edu.br
by following the steps explained in a previous publication.

2) Present Day’s Version of MCTest: MCTest can produce
exams corresponding to students of given classes. The stu-
dents’ data must be given by CSV spreadsheet, and questions
are taken from a databank in which they must be written
according to a specific template in TXT format (see Fig. 1).

In Fig. 1 we see five multiple-choice questions written in a
TXT file. Their levels of difficulty are assigned as QE (easy),
QM (medium) and QH (high). For instance, in Fig. 1 there
are three easy questions, one medium and one difficult. For
multiple-choice questions each alternative must begin with
“A:”, and MCTest will always take the 1st one to compose
the whole answer key. Of course, MCTest performs a nested
shuffling: of questions and of their attached alternatives. The
user can also include dissertation questions by toggling them
with “QT”. MCTest produces all exams written in LATEX with a
custom header. A resulting PDF can be seen in Fig. 2, already
with the nested shuffling. In Fig. 1, when the same character
appears after the phrase topic #::, for instance “a::”, this
means that for each student only one of the two questions in
Fig. 1 will be drawn.

When we just want to change some values manually, either
in the statement or in the alternatives of a question, and
then perform a random choice of them for each student,

QE::topic 1:: Question Q1-example of equation:
$\sin A \cos B =
\frac{1}{2}\left[\sin(A-B)+\sin(A+B) \right]$
A: answer 1a
A: answer 1b
A: answer 1c
A: answer 1d
A: answer 1e

QE::topic 2::a:: Question Q2
A: answer 2a
A: answer 2b
A: answer 2c
A: answer 2d
A: answer 2e

QE::topic 2::a:: Question Q3
A: answer 3a
A: answer 3b
A: answer 3c
A: answer 3d
A: answer 3e

QM::topic 3:: Question Q4
A: answer 4a
A: answer 4b
A: answer 4c
A: answer 4d
A: answer 4e

QH::topic 4:: Question Q5
A: answer 5a
A: answer 5b
A: answer 5c
A: answer 5d
A: answer 5e

Fig. 1. Example of questions written for MCTest.

the model presented in Fig. 1 is inefficient. This is because
duplicating and then changing a text manually can lead to
errors. Another resource not available in MCTest 4.0 is the
automatic computation of the right answer, which should then
be included as one of the alternatives.

These are the main reasons for us to carry on version 4.1
of MCTest, which includes methods to generate parametric
questions and to compute the right answer, together with the

Fig. 2. A test generated by MCTest.

automatic production of false alternatives, as we are going to
see in the next subsection.

B. MCTest with Parametric Questions

In order to implement parametric questions in MCTest we
had to include two special delimiters [[code: ...]] and
[[def: ...]]. The former must come in the statement,
either of the question or of the alternatives. With [[code:
...]] we define the parameters (or variables) to be used at
generating each student’s test. The latter must be defined at
the end of the TXT file. In this case each parametric question
must be in a separate file. Moreover, [[def: ...]] has to
contain the possible values applied beforehand, together with
a method called algorithm. In the next section we show
some examples of parametric questions included in MCTest
4.1 by means of these delimiters.

IV. RESULTS

By the methods just presented in the previous section,
now we illustrate how they solve two practical problems that
involve parametric questions.

A. Parametric Question for ULM

Uniform Linear Motion (ULM) is a typical subject of
parametric questions. In Fig. 3 we see a complete example
for a Physics exam written in TXT.

On the first line we classify both the difficulty and the
subject QE::ulm::. Notice that we may use LATEX syntax in
the statement and in the alternatives. For instance, comments
are toggled with % and math symbols enclosed with $. For a
multiple-choice question, right after the statement we include
each alternative followed by A:. The first must be the right
one, according to the MCTest method. Therefore we have A:
[[code:correctAnswer]], where correctAnswer is
a variable computed in [[def:, which also defines a function
called algorithm.

QE::ulm:: % question text
A car moves on a road with an hourly function
$s=[[code:a0]] + [[code:a1]]t$, where s is
given in miles and t in hours. The car passes
the mile [[code:a2]] exactly at:

% answers
A: [[code:correctAnswer]]
A: [[code:correctAnswer-1]]
A: [[code:correctAnswer-2]]
A: [[code:correctAnswer+1]]
A: [[code:correctAnswer+2]]

[[def:
a0 = random.randrange(-6, 3, 1) # return
a1 = random.randrange(3, 8, 1) # random
a2 = random.randrange(3, 8, 1) # numbers

def algorithm(a):
from sympy import *
a0=int(a[0])
a1=int(a[1])
a2=int(a[2])
s,t = symbols(’s,t’)
s=a0+a1*t
r = float(solve(s-a2,t)[0])
return r

global correctAnswer
correctAnswer= algorithm([a0,a1,a2])
]]

Fig. 3. Example of a ULM question.

The algorithm must have all variables in the statement as
parameters. The ULM problem asks for the solution of an
algebraic equation. For that we use the Python library sympy
and define two variables: s and t. Afterwards one simply
writes the corresponding equation s=a0+a1*t. The result
is given by the function solver of the library sympy. Three

random variables a0, a1 and a2 come either in the statement
or in the alternatives. That is why we have included the
function random.randrange from Python.

Finally we must assign algorithm([a0,a1,a2]) to
the global variable correctAnswer in order to make it store
the correct result, which is then inserted in the first alternative.
The wrong alternatives were defined as the solution ±1 and
±2. These are arbitrary values but most importantly is not
to repeat alternatives. We can resort to another method that
produces wrong answers and avoids repetition, as shown in
the next example. Fig. 5 depicts three random outputs of that
ULM problem.

B. Parametric Question to Handle Matrices

Fig. 4 illustrates an example for handling matrix to eval-
uate the students’ logical programming skills in a cho-
sen language. Dimensions are large because the students
have to solve through a program code. They must com-
pute the sum of the entries of a matrix whose dimen-
sions and elements are both randomly taken while MCTest
produces each student’s test. Differently from the previ-
ous question, this one resorts to a new method called
createWrongAnswers([5,10]), which produces five
distinct random values between correctAnswer-10 and
correctAnswer+10. Fig. 4 shows the text in TXT that
made MCTest produce the three outputs in Fig. 6.

C. Experiments

Our new method to generate parametric questions was
applied for the course Introduction to Computer Science (ICS)
at our university in the second trimester of 2018. On that
occasion we had 167 matriculated students and ICS was a
half-distance-learning half-classroom course. In the classroom
their presence took place 4 times: opening, first test, project
and second test. This course belongs to an interdisciplinary
bachelor’s programme offered by our university, where the
students come from many different backgrounds.

Our university’s instruction periods are organized in three
trimesters. Here all undergraduate students follow two Interdis-
ciplinary Bachelor’s Programmes (IBP): Science&Technology
and Science&Humanities abbreviated as BCT and BCH, re-
spectively. On average we have 1,600 freshmen in BCT and
400 in BCH annually. ICS is mandatory for all students, it
belongs to BCT and is always scheduled for the third trimester.

Both BCT and BCH take three years, and with an additional
year the student can graduate either in Maths, in Physics, or
in Computer Science. Right after BCT, with two additional
years the student can graduate in one of the nine engineering
programmes offered by our institution. Since our students
come from many different backgrounds, ICS is devoted to
teaching logic programming for daily problems on several
subjects in the student’s life.

In the classroom we gave tests with parametric questions.
The first exam was in hard copy with dissertation questions.
The project and the second exam were given in a computer
laboratory, where students had to hand in three program codes

QE::matrix:: % question text
Build a matrix $[[code:a0]] \times
[[code:a1]]$ whose elements (i,j) are
$((((i+1) * [[code:a2]]) + ((j+1) *
[[code:a3]])) \mod{100})$. Compute the sum
of the entries of this matrix. Indexes i
of rows and j of columns begin with 0.

% createWrongAnswers([5,10]) - Makes
% 5 different wrong alternatives
% between +/- 10
A: [[code:correctAnswer]]
A: [[code:createWrongAnswers([5,10])]]

[[def:
code to return a correct answer with the
following variables
def algorithm(a):
a0 = int(a[0])
a1 = int(a[1])
a2 = int(a[2])
a3 = int(a[3])
P = np.zeros((a0,a1))
for i in range(a0):

for j in range(a1):
P[i,j] = (((i+1)*a2)+((j+1)*a3))%100

return int(P.sum())

variables used in the question
produces a random number between 60 and 80
a0=random.randrange(60, 80, 1)
a1=random.randrange(60, 80, 1)
takes a number at random from a set of three
a2=random.choice([7, 13, 19])
a3=random.choice([11, 17, 23])

global correctAnswer
correctAnswer= algorithm([a0,a1,a2,a3])
]]

Fig. 4. Example of a parametric question on matrix.

by uploading them into a virtual learning platform. Each
exam consisted of three questions: of easy, medium and high
difficulty. Moreover, each question type came in different
versions, as depicted in Figs. 4 and 6. Notice that the versions
do not change the logic programming for solving them.

Hence, MCTest enables us to produce several versions of the
same question without repetition. We just need one statement
as shown in Figs. 4 and 6. Thus, for each student a different
triple of questions was generated (of easy, medium and high
levels of difficulty). Some examples of easy level are illustrated
in Fig. 6.

V. CONCLUSIONS

The main contribution of our work is a method to generate
parametric questions for exams in hard copy. Both production
and generation of multiple-choice questions are free softwares,
and the former even open-source. Automatic correction of the
multiple-choice answer cards follows the method presented in
a previous work. To the best of our knowledge MCTest is
the first platform totally devoted to exams in hard copy that

Fig. 5. Example with three outputs of the parametric ULM.

Fig. 6. Example of three outputs from the matrix parametric question.

includes automatic correction, besides production of tests with
random answer keys.

In this paper we explained how to produce parametric
questions with MCTest. Though it apparently requires some
knowledge of both LATEX and Python, MCTest offers a folder
with several templates that can be used by any teacher and
any professor, and they just have to adapt the templates to
write their personal questions. Moreover, the MCTest exam
generator is open-source, and the several examples of para-
metric questions available in our repositories can not only help
teachers and professors check what we have already done, but
they can also contribute with new models of questions. With
this interaction we hope to achieve a great facilitation in the
arduous task of evaluating large classes.

With MCTest we can also give weekly tests without much
effort. This helps track the gradual performance of each stu-
dent through periodical and personal evaluations, as suggested
by Gusev et al. [11]. For example, if a student cannot answer
questions about a certain subject, then we include more related
to questions in the following exam. Our approach also differs
from others in the sense that we focus on exams in hard copy,
which include parametric questions instead of quizzes on the
web (Gasev’s proposal does not include parametric questions
either).

In this paper we only gave examples of mathematical and
programming questions but an online version of MCTest is
under development and it will include a great variety of
parametrized questions. But the teacher/professor will always
have to prepare them in order to make a reasonable test that
covers the programme of the course, with an adequate number
of questions, alternatives per question and so on. For this task
[12] presents many results of preparing questions based on
cognitive model.

In a future work we shall implement a web server en-
dowed with access control, for teachers and professors to
store their parametric questions through a friendly Graph-

ical User Interface (GUI). Parametric questions will also
take other formats besides multiple-choice. For instance,
dissertative and true/false models. Besides Python, solution
of parametric questions by other programming languages
could be easily encompassed by another feature that will
be included in a forthcoming work. For instance, commands
like [[def:python:...]], [[def:cpp:...]] and
[[def:java:...]] will make MCTest generate the cor-
responding PDF-file according to each specified language.

REFERENCES

[1] S. Pathak and P. Brusilovsky, “Assessing student programming knowl-
edge with web-based dynamic parameterized quizzes,” Proc. of ED-
MEDIA, pages 24–29, 2002.

[2] P. Brusilovsky and S. Sosnovsky, “Engaging students to work with
self-assessment questions: A study of two approaches,” ACM SIGCSE
Bulletin, volume 37, pages 251–255, 2005.

[3] M. Gangur, “Matlab implementation of the automatic generator
of the parameterized tasks,” June 2018. [Online]. Available: https:
//goo.gl/wwATNW

[4] A. Basaran, G. Sezer, H. Özcan, H. F. Ugurdag, E. Argali, and O. E.
Eker, “Smart question (sq): Tool for generating multiple-choice test
questions,” Proceedings of the 8th WSEAS International Conference on
Education and Educational Technology, EDU’09, pages 173–177, 2009.

[5] “Sobre o MEGUA,” June 2018. [Online]. Available: http://cms.ua.pt/
megua

[6] P. Oliveira, D. Seabra, and P. Cruz, “Parametrized problem databases in
sage,” 2014.

[7] “Tutorial do MEGUA,” June 2018. [Online]. Available: http://megua.
web.ua.pt/tutorial

[8] “TestMakPro3,” June 2018. [Online]. Available: http://www.
image-ination.com/testmakePro3

[9] “AMC - Multiple Choice Questionnaires management with automated
marking,” June 2018. [Online]. Available: http://auto-multiple-choice.
net

[10] H. Kagotani, F. Bral, A. Bienvene, and A. Sarkar, “Auto Multiple
Choice,” June 2018. [Online]. Available: http://download.gna.org/
auto-qcm/auto-multiple-choice.en.pdf

[11] M. Gusev, S. Ristov, and G. Armenski, “Technologies for interactive
learning and assessment content development,” International Journal of
Distance Education Technologies (IJDET), vol. 14, no. 1, pp. 22–43,
2016.

[12] M. J. Gierl, H. Lai, and S. R. Turner, “Using automatic item generation
to create multiple-choice test items,” Medical education, vol. 46, no. 8,
pp. 757–765, 2012.

