
Automatic Correction of Multiple-Choice Tests using
Digital Cameras and Image Processing

Francisco de Assis Zampirolli and José Artur Quilici Gonzalez and Rogério Perino de Oliveira Neves
Centro de Matemática, Computação e Cognição

Universidade Federal do ABC
Santo André, Brasil 09.210-170

Emails: {fzampirolli, jose.gonzalez, rogerio.neves}@ufabc.edu.br

Abstract—There are currently many commercial solutions for
automated scoring of Multiple-Choice Tests, usually composed
of a software and a scanner, but the widespread dissemination
of laptops, tablets and smartphones with built in cameras offers
new possibilities for doing the same job with no need for any
extra hardware. This article presents a simple and innovative
method to transform captured images of answer sheets into
reduced binary matrices containing answers to the questions plus
some control elements, using simple morphological operations for
segmentation. This methodology is applied to the real problem of
automatic correction of Multiple-Choice Tests. Initially, the user
positions the answer key sheet in front of the camera in order to
save the image to the disk, then the image is gauged to evaluate
the test type. Subsequently, student answer sheets can be read
using the camera, having the test score displayed on the screen
and/or saved to a file.

Keywords: Image Processing, Mathematical Morphology,
Multiple-Choice tests, Optical Mark Recognition.

I. INTRODUCTION

Image analysis can profit from strategies where the neigh-
borhood relation between objects in the image, such as regions
of answer sheets of multiple choice tests, can be represented
simply by matrix. Furthermore, Mathematical Morphology is
an elegant form to solve image-processing problems using
consistent theoretical bases, that is the theory of sets [1],
[2]. In Mathematical Morphology the transformations between
images, which are called morphological operators, can be
defined by the structuring functions [3].

The method described was first conceived to address one of
the major problems in distance education. To avoid cheating
and to verify the identity of the test taker, it is common to
require the presence of all students in a test center in a specific
date. However, for a large number of students, there might not
be enough computer terminals available for an electronic test.
In that case, the alternative is to apply printed Multiple-Choice
Tests.

Every year, the Federal University of ABC (UFABC, São
Paulo, Brazil) offers not only courses in site, but also the
possibility of distance education for hundreds of students.
Sometimes the number of applicants to the courses may
amount to thousands. Looking for feasible ways to overcome
these difficulty, a small group of teachers introduced an au-
tomated tool to cope with the limited human resources. The
work here discussed is part of a long term plan for distance
education which will integrate cloud computing, laptops, and
smartphones to produce tailored intelligent software.

There are several popular software for generating
Multiple-Choice Tests such as Quiz-Press, available at
<www.solrobots.com/quizpress>. On the more ex-
pensive side there are also specific commercial hard-
ware/software bundles dedicated to scoring the tests, however,
there are no specific details about them in the literature
regarding methodologies and techniques.

Optical Mark Recognition (OMR) is the process of dis-
crete data acquisition by scanning predefined OMR forms,
eventually detecting the presence or absence of marks in the
spaces reserved for filling. This technology was pioneered
in the United States in the 1950s, already being used at
assessments of students, and has since become widely used
in Multiple-Choice Tests. For its implementation dedicated
OMR scanners or image scanners are often used. In the
latter case the image is processed by an OMR software with
similar efficacy <www.omrsolutions.com> but slower
performance, presenting advantages such as lower cost and
the possibility to employ user customizable OMR forms. In
its recent use in portable devices, such as digital cameras and
smartphones, the operation is susceptible to increased error
and prolonged runtime, due to the manual capturing of images,
given the difficulty to position the paper containing the data
parallel to the camera CCD at a suitable distance and the
right angle, and image quality issues, such as uneven lighting
across the paper. There are several OMR and OCR (Optical
Character Recognition) programs available, as well as Apps
for iOS and Android phones dedicated to decoding barcodes
and QRCode [4], [5], [6].

II. METHODOLOGY

Although digital imaging was introduced in the beginning
of the twentieth century (1920) by the British inventors Harry
G. Bartholomew and Maynard D. McFarlane, the popular-
ization of Digital Image Processing in academia occurred
only later in the same century (1970) with the cheapening of
personal computers and the advent of digital cameras. Now,
in the second decade of this century, we witness increasing
demand for simpler and more efficient applications, primarily
for use in mobile devices. With this premise in mind, this paper
can be seen as a first attempt to provide a cheap alternative
of an automated scoring of Multiple-Choice Tests using Image
Processing.



A. Data Acquisition

We used an image database of 674 tests filled by candidates
to the graduate program Specialization in Information Technol-
ogy, a distance learning modality course offered at UFABC,
the test being part of the entry selection process. Each test was
printed on one A4 size paper containing both the answer sheet
and 24 multiple-choice questions with five alternatives each,
only one being the correct answer. Eight different sets of tests
were prepared, presenting different questions and variations.
The model proposed in this paper supports up to 16 different
test sets. We opted to design the answer area in this format for
the sake of simplicity, so that any traditional word processor
can be used to generate the Multiple-Choice Tests, unlike with
traditional OMR forms.

The computer used was a MacBook Pro, equipped with
a 2, 26GHz Intel Core 2 Duo processor, 2 GB of memory,
operating system Mac OS X version 10.6.8 and a graphic
processor from Nvidia model GeForce 9400M , featuring
256MB DDR3 SDRAM shared memory. Tests and tem-
plates (containing the filled answer sheet for each different
set) were later captured using the 2Mega − pixel built-in
camera. For image processing and information display we
used Matlab, version 2011 to write the source code. These
requirements are necessary to validate the results presented in
this article. However, a low-cost version of the software for
Android smartphones is in development, intended to simplify
its deployment and use.

The developed code was written according to the following
steps:

1) read the templates for each set;
2) save a TIFF image containing only the answer sheet

area of the template;
3) save a two-dimensional matrix containing the correct

answers to each set;
4) read the answer sheets from student tests;
5) save the image of each test to a separate file in TIFF

format;
6) add the processed test results to a file in csv format.

B. Image Processing

In order to capture the answer sheet area, each test must
be positioned in front of the notebook facing the camera,
whose result is shown in Figure 1. The answer sheet must be
positioned in the image in such fashion the four external bold
squares fit within the displayed guidelines (the larger outer
rectangle), as shown in Figure 2. Further adjustments must be
made so all the 4 external squares are at least 50% contained
within the yellow squares. After this adjustment, the image of
the answer sheet is captured, as shown in Figure 3. Using this
alignment procedure, it was unnecessary to apply rotations or
scaling to the captured images, as performed by Nguyen et
al. [7], this way preventing further distortions which could
compromise the final analysis.

Thus, the target area is marked by four outer squares, serv-
ing as guidelines to define the image position and dimensions.
For easy understanding, this area can be considered a table of 7
rows and 26 columns, or 7×26, which, excluding the borders,
represents a test with 24 questions and five possible answers.

Fig. 1. Example of a printed test.

Fig. 2. Fitting the answer sheet within guidelines: The image illustrates the
desired position.

The borders of the printed tests contain control elements,
including the four squares used to guide the acquisition. By
convention the origin (1, 1) (row, column) of this matrix is
the upper left corner. Thus, the four control elements for
acquisition (yellow squares) from origin and clockwise are
(1, 1), (1, 26), (7, 26) and (7, 1).

The matrix element (6, 26) when filled (in this case, with
black ink) indicates a test template, in which case an array of
7×26 of zeroes (white) and ones (black) must be written to the
disk. Figure 3 shows an example of an image that generates a
template in the disk.

The matrix elements (2, 26), (3, 26), (4, 26) and (5, 26)
represent the type of test in binary representation, in that order
of significance. Thus, 4 array elements (bits) allow up to 16
different types of tests. Figure 3 shows a type 1 test.

Images for all templates and student tests are saved to the
disk in TIFF format for further improvements using image
processing procedures. Figure 4 shows the program output in
which the operator can verify the correctness of the data being

Fig. 3. Image captured with the camera, to be processed for detection of the
given answers.



Fig. 4. Program output displayed to the user, considering a template.

Fig. 5. Input image after capturing.

saved, in this case, a template of the test type 1. The details
of image segmentation applied to achieve this result will be
presented in the next section. When a student test is properly
scored by the system, the program will read this template from
the disk and make comparisons to generate the score.

C. Image Segmentation

To segment [8] the answer sheet area of the test, presented
in the previous section, each frame was captured using the
command

colorImage = getsnapshot(vidobj);

the variable vidobj being defined in Matlab with the com-
mand videoinput. The color image is then converted to
gray levels, by retaining only the first band, corresponding to
the red component, through the command

grayScaleImage = imadjust(colorImage(:,:,1));

in which the function imadjust was used to improve contrast
(for more details see the help in Matlab). Figure 5 illustrates
the input image in gray scale grayScaleImage.

After this step, we used a threshold transformation [9], as
shown by the next steps:

T = graythresh(grayScaleImage);

binaryImage = 1-im2bw(grayScaleImage,T);

Fig. 6. Image after applying the threshold technique.

Fig. 7. Image after applying opening and clearing the border techniques.

The resulting black and white image binaryImage is a
binary image with black squares receiving value 1 and white
squares 0 in the represented 26× 7 array. See Figure 6.

Next, a morphological opening operation [3] is performed,
using a square structuring element of size 10 to remove noises,
including the rows and columns of the answer sheet area:

binaryImage2=imopen(...

binaryImage,strel(’square’,10));

Finally, we eliminated the connected components touching
the edge (See Figure 7):

binaryImage3=imclearborder(binaryImage2,4);

The image binaryImage3 is the input used to de-
termine the 26 × 7 matrix by using the Matlab function
regionprops, where each marked square in the image
represents at least one connected element. The marked squares
are highlighted in Figure 8, where the outer red square is
defined by the four yellow squares at the corners. In this case,
all the 4 external squares are at least 50% contained within the
yellow squares, and the process of image capture ends. Now
begins the process of image segmentation to determine each
square marked on the answer sheet area.

Fig. 8. Image illustrating the recognition of green squares using the
regionprops function on the labeling of the image shown in Figure 7.



Fig. 9. Image showing the blue outline of rows and columns according to
the number of questions and answers in the test.

Fig. 10. Image illustrating the detection of filled squares, highlighted in
yellow.

Then, the image in Figure 7 is partitioned in columns
and rows, according to the number of questions and answers,
zeroing the remaining spaces, as illustrated in Figure 9, with
separators for rows and columns shown in blue.

The next step is to identify each filled square. This step
is performed again using the regionprops function, with
results highlighted in yellow in Figure 10.

Finally, we check for invalid responses, like questions
containing none or more than one answer. In case of templates,
a 7 × 26 matrix of zeros and ones is saved to disk, ones for
marked squares and zero otherwise, as illustrated in Figure 10.
When scanning a student test, the test matrix is compared
with the matching template found on the disk, as shown in
Figure 11. The control elements (blue squares) in the last
row of the image indicate questions with increased value, in
this case, questions worth 50% more. Moreover, the green
square means that response was correctly marked, and red
square means where would be the correct answer on a question
incorrectly marked.

The video presented in [10] shows part of the correction
process, conducted in one afternoon, for a total of 674 tests.
The process of correcting a single test spends in average 10
seconds.

Fig. 11. The first gray scale image shows a captured student test. The bottom
image shows the test scoring, highlighting the correct answers in green and
the wrong answers in yellow. The red squares highlight unmarked correct
answers. Control elements are located in the borders, like the outer squares
in the first and last column, which contains the four corner guides and the
coded test type. The marked squares in the bottom line indicate questions with
increased value. Finally, a summary is shown below the image displaying the
number of correct answers, invalid answers, the test type, the final score and
the test number.

III. RESULTS AND DISCUSSION

When a question has none or more than one answer or
was incorrectly marked (for example, with a ”X” instead of
a filled square), it is eliminated and marked with a vertical
yellow rectangle spanning the whole column, as shown in
Figure 12, 13, 14 and 15, allowing for the operator to evaluate
whether the mistake was made by the student or by the system
in detecting the mark.

For 674 tests of eight different types, only nine scoring
problems were detected, four of them shown in figures 12, 13,
14 and 15, resulting in error rates as low as 1.3%. The re-
maining five error cases were similar to those in the presented
figures, each test having only one misinterpreted question.
The nine problematic cases occurred because students did
not follow the instructions. For the scores obtained using the
presented methodology, in spite of instructions in the test,
which clearly explained that the squares should be completely
filled with ink for proper recognition, invalid answers were
detected in only 6.7% of all 674 tests (42 tests), the operator
being able to visually identify them and alter the score when
necessary.

Whereas state of the art solutions for correction Multiple-
Choice Tests may offer as low as 0% error rates, this paper
presents a cheap alternative, able to popularize automatic
corrections without the need for additional hardware.

A. Future Works

Using image processing techniques, such as region growing
and other filters, image segmentation can be further improved
in the algorithm to consider valid answers similar to those



Fig. 12. Image highlighting in yellow questions containing squares incorrectly
filled in test number 322.

Fig. 13. Image highlighting in yellow questions containing squares incorrectly
filled in test number 227.

presented in Figures 12, 13, 14 and 15 1.

A similar application is currently being ported to mobile
devices, with a few improvements which will enable it to run
stand-alone on smartphones and tablets running Android OS.
Early results explored the capability of transmitting images
from mobile devices to desktop computers for further analysis.
As an example, Figure 16 shows an image acquired from a 3
mega-pixel camera-phone (LG Model LGP350), in a resolution
of 2048 × 1536 pixels. The acquired images was transmitted
via Bluetooth and stored in a specific folder in a Desktop. The
code was modified so the line responsible for acquiring the
image from the computer camera now reads the files from the

1All images used in this article are available on
<http://professor.ufabc.edu.br/∼fzampirolli/MCTest>
for future works by the community.

Fig. 14. Image highlighting in yellow questions containing squares incorrectly
filled in test number 2.

Fig. 15. Image highlighting in yellow questions containing squares incorrectly
filled in test number 135.

specified location. The remaining computations are analog to
the procedures presented in this paper.

Another possible source of images is a scanner, with
capability to batch digitize hundreds of tests and send the
images straight to a computer folder through the network.
Despite the fact that it would enable further automatization
of the process, effectively eliminating the whole video capture
section, it would make the software less inclusive, considering
the need for a scanner in order to use it.

IV. CONCLUSION

In this paper we have presented a system which uses
techniques from mathematical morphology, capable of ac-
quiring images from computer cameras (and eventually a
myriad of alternative devices) to perform automated scoring
of a Multiple-Choice Tests, presenting high accuracy in the



Fig. 16. Image captured by a cell phone and transmitted via Bluetooth to
a PC, which was responsible for executing the same procedure presented on
the stored image.

results. The steps performed by the algorithm were explained
in detail (accompanied by the respective Matlab commands)
and illustrated by its employment in a real case scenario.

The software is currently being ported to smartphones,
what will allow teachers to travel to test centers carrying only
printed tests with no need for additional resources, apply the
tests, capture images and calculate scores in loco, being able
to discuss the test results with the students on the same day.

REFERENCES

[1] J. Serra, Image analysis and mathematical morphology (Academic Press,
London, 1982)

[2] J. Serra, Image analysis and mathematical morphology - Volume {II}:
theoretical advances (Academic Press, London, 1988)

[3] H. Heijmans, Morphological image operators (Academic Press, Boston,
1994)

[4] D.J. Sen, R.N. Patel, U.Y. Patel, International Journal of Pharmaceutical
and Applied Sciences 1(2), 56 (2010)

[5] A.F. Mollah, N. Majumder, S. Basu, M. Nasipuri, International
Journal of Computer Science Issues 8(1) (2011). URL
http://arxiv.org/abs/1109.3317v1

[6] K. Chinnasarn, Y. Rangsanseri, in Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, vol. 3808, ed. by
A.G. Tescher (1999), Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, vol. 3808, pp. 702–708

[7] T.D. Nguyen, Q.H. Manh, P.B. Minh, L.N. Thanh, T.M. Hoang, in
International Conference on Advanced Technologies for Communications
(ATC 2011) (2011), pp. 268–271

[8] F. Meyer, International Journal of Pattern Recognition and Artificial
Intelligence 15(7), 1089 (1996)

[9] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd edn.
(Addison-Wesley Publishing Company, 2002)

[10] F. de Assis Zampirolli, J.A.Q. Gonzalez, R.P. de Oliveira Neves.
Automatic corrections of Multiple-Choice Tests. YouTube
<http://youtu.be/rhp4gfwrdf0> (2012)


